
NASA TECHNICAL NOTE .-.- N A S A  TN ~ D-3430- 

- g  - 
- 0  
- I  - 0 

M - 
w DG 5 

LOAN COPY: RE‘:= 
- X I  - b  

n AFWL (WLI,9- 4 

z KIRTLAND A F B , r m  
c WZZZE r rer .!! e - 
r/l m L e z 

?? 

2 
- 

TRANSIENT RESPONSE FROM THE 
LYAPUNOV STABILITY EQUATION 

by William G. Vogt 
George C. Marshall Space Flight Center I /  , 

I *  

1. il 
I Hantsville, A Za. ! .- 

I ‘, , -  
Ll\< 

“i \ .  N A T I O N A L  AERONAUTICS A N D  SPACE A D M I N I S T R A T I O N  WASHINGTON,  D. C. ---,J-UNL 1966  



TECH LIBRARY KAFB, NM 

I Illill 11111 lllll ill 8 I 1111 1111 I111 ._ 

OL30Lb3 
NASA ‘I” U-34YU 

TRANSIENT RESPONSE FROM THE LYAPUNOV 

STABILITY EQUATION 

By Wil l iam G. Vogt 

George C. Marsha l l  Space Flight Cen te r  
Huntsvil le,  Ala.  

N A T I O N A L  AERONAUTICS AND SPACE ADMINISTRATION 

For sale by the Cleoringhouse for Federal Scientific and Technical Information 
Springfield, Virginia 22151 - Price $1.00 





TABLE OF CONTENTS 

Page 

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 

INTRODUCTION ....................................... I 

FORMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 

System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 
Lyapunov Functions ................................ 3 

PENCILS OF QUADRATIC FORMS . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 

Definitions and Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 
Extremall+opertie% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 
Relations to f and r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 

. . . . . . . . . . . . . . . . . .  RELATIONS BETWEEN h. ( R  V-I) AND Ai (A)  8 
1 - -  

Notation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 
Complex -Valued Vectors .......................... 9 
Relations Between h.(R V ) AND h.(A) . . . . . . . . . . . . . . . . . .  9 

1 -  1 - -  

. . . .  A TRANSFORMATION OF THE LYAPUNOV STABILITY EQUATION. 11 

OTHER BOUNDS ON THE 1. ( R  V-') . . . . . . . . . . . . . . . . . . . . . . . . . .  14 
1 - -  

-1 
Boundsonh1(_R_V ) .  . . ............................. 14 
Bounds on ( R  v-9.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 n - -  

A v 
R E L A T I c " T O r A N D r  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 

V 
RELATIONS TO 9 AND Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 

EXAMPLES .......................................... 16 

CONCLUSI~NS ......................................... 20 

REFERENCES ........................................ 21 

iii 



TRANSIENT RESPONSE FROM THE LYAPUNOV STABILITY EQUATION 

BY 

William G. Vogt 

SUMMARY 

For a certain class of linear and nonlinear asymptotically stable systems 
and a certain class of Lyapunov functions v @ ) ,  estimates of transient response, 

v 

a re  related to the real parts of the characteristic values of the system matrix, 
A ,  of the linear approximation system. It is shown that 

A 
y 2 -2 min [Re hi(A) J 

y 5 -2max [Rehi(A) ] 

i - 
V 

i - 
A V  

and a formula is given to choose v(xJ such that y ,  y approach these limiting 
values as closely as desired. 

I NTROD U CT I ON 

In stability studies of control systems describable by a vector 
differential equation of the type 

wherez  andf(xJ are n-vectors and f(5) satisfies certain conditions [I] 
assuring the existence, uniqueness, and continuity of solutions to equation 
(I), a common procedure is to obtain a Lyapunov function v(X,, which, along 



with its derivative 
stability of the null solution x_ = 0 of equation (I). More specifically, for most 
control systems , asymptotic stability is desired. A sufficient condition for 
asymptotic stability of the null solution (NS) of equation (I) is the existence of 
a Lyapunov function v(xJ which, along with its derivative i(x) , satisfies the 
following conditions in some neighborhood of the origin [2-4] : 

(xJ , satisfies conditions sufficient to assure stability or in- 

(a) v ( 9  = 0 

(b) v(xJ > 0, x - # c  
(c) grad v (3 is continuous 

(d) i(xJ = lgradv(xJ 1' - f(xJ < 0, x_ f g .  

If such a v(xJ exists, the asymptotic stability of the NS of equation (I) 
is assured. For such v(&) , it has been shown that an estimate of the transient 
response of equation ( I) can be obtained [2] .  

termining two constants y ,  y by the following formulas 

This estimate consists of de- 
V A  

in some region 0 < I x_ I < r , r > 0 where the conditions of equation (2 )  are 
satisfied. Denoting by _e( t;  50 ) a solution of equation ( I) starting from x o  
at time t=O , the time behavior of v (S( t; _xo))must satisfy [ 21 

v b o )  exp [ -*I 5 v(c(t;_xo)) 5 v b o )  exp [ -$I .  (4) 
A 

A V 
Thus y and y correspond in some sense to the largest and smallest time 
constants of the system described by equation (I) , but the exact relationship 
is not clearly understood. 

A V 
The significance of y and y is obscured largely because the Lyapunov 

functions are not unique. Different Lyapunov functions yield different values 
A V for y and y. These estimates depend on the system of equations and the 

Lyapunov function chosen . 
The object of this paper is to relate the estimates in question to a 

certain class of equation (I) and a certain class of Lyapunov functions 
satisfying equation ( 2 ) .  

2 



FORMU LAT I ON 

System 

The following investigation is limited to that LASS of systems of 
equation (I) for which the right s i d e f ( 3  satisfies the following conditions 

In words, f@) is limited to that class of vector functions, each com- 
ponent of which is expressible in a convergent power ser ies  expansion in some 
neighborhood of the origin and the linear approximation of which has only neg- 
ative real part characteristic values. If 4 is a matrix that satisfies equation 
( 6 )  it is called a stability matrix. 

The ordinary linear constant coefficient differential equation which 
approximates equation (5) in some sufficiently small neighborhod of the NS 
of equation (5) is given by 

& = 45 

and the solutions are designated by - -  @ (t; xg) . 

Lya pu n ov F u n ct i o n s 

Attention is restricted to Lyapunov functions of the form 

v(xJ = z'xx_+vi(_x) 

where _V is a real, symmetric, positivedefinite (RSPD) matrix and vi(x_) 
contains only terms of degree greater than two in the variables xi, x2,. . . ,x 

Thus, the first approximation to v(_x) is given by 

n' 

V(2CJ = _ x ' _ v x _ .  (9) 

The derivative of v ( 9  along solutions to equation (1) is given by 

t(5) = x' - -  (A'  + EA) x_ + ( 10) 

3 



where +I@) consists only of terms of degree greater than two in the variables 
xi, x2, . . . , x The first approximation of +(_) is therefore given by n’ 

+e) =z’ (A’_V+_VA)_x . (11) 

For v(s )  , -G @) to satisfy the requirements of equation ( 2 )  in some 
neighborhood of the origin, e@) must be negative definite, thus implying. 
that 

where - R is an RSPD matrix. 

Equation (12) is referred to as the Lyapunov stability equation. To 
illustrate its fundamental importance, a theorem is stated. 

Theorem i [ 21 : A is a stability matrix if ,  and only if ,  _V, as a solution to 
equation (12) , is unique and RSPD wherever _R is RSPD. 

Thus , instead of choosing an RSPD _V in equation (9 )  such that the 
resulting _R in equation (12) is RSPD, choosing any RSPD _R and solving for 
- V in equation (12) settles the stability question of the NS of equation ( 7 ) .  
If there is asymptotic stability of the NS of equation (7) , _V provides an 
appropriate Lyapunov function V ( 5 )  in equation (9)  which meets all the con- 
ditions of equation ( 2 ) .  Thus, in the system formulation, equation ( 6 )  can 
be replaced by the condition that _V, as a solution to equation (12), is unique 
and RSPD wherever _R is RSPD. 

Note that the conditions of equation (5)  and (6)  a r e  sufficient to 
assure the existence of Lyapunov functions of the type required by equation 
(8) [3]. With this formulation, the problem originally posed can be reduced 
to a simpler problem. 

REDUCTION OF THE PROBLEM 

A V 
The original problem was to determine how the constants y and y 

defined in equation (3) a re  related to the systems and the Lyapunov functions 
chosen. From the definition 

-+ (X) - 
v (E> = - 

4 



it is clear that for 0 < 1 x_ I < r 
A 
Y = [ Y ( , x ) l  

Substitution of equations (8) and ( 10) into equation (13) yields 

+I (5) 

where 

From equation (15) and the nature of the Lyapunov function and its derivative 
in equations (8) and (10) , it is clear that for all 0 < I x I < ri < r there 
exists an E (ri) such that 

and further that 

lim E (ri) = 0 as ri -0. 

where 

Clearly, for the class of systems and the class of Lyapunov functions 
A 

considered, r and ?' give thelimiting'values of 9 and 7.  The original problem 
is thereby reduced to the consideration of the following: 

5 



I 

Problem: Given a stability matrix, 4, what a re  the interrelationships between 

A ,  _R, and _V satisfying equation (12)  in terms of r and r defined by equation 
(20) ? 

A V 

The answer to this reduced problem, while still incomplete, is 
scattered throughout many publications [5-71, often in forms which a r e  not 
suitable to the problem described here. The treatment below is an attempt 
to organize this material to give an answer to this problem and at the same 
time to introduce some new results. 

A V 
Note that equation (4) is not satisfied with 2 r  and 2 r  substituted for 

The relations of equation (19) indicate that the fastest (slowest) 
A V 
y and y. 
system "transient" in terms of equation (4) is as  fast (slow) or faster 

(slower) than that characterized by exp [ -2r  t ] (exp [ -2T t 3 )  and further 
that near the origin the fastest and slowest response a r e  characterized by 

"time constants" 1/2r and 1/2r respectively. 

A V 

A V 

PENCILS OF QUADRATIC FORMS ['51 

Definitions and Theorems 

The real form 

is called a pencil of quadratic forms. If x '  V x is positive definite, the 
pencil is called regular. The equation 

- -- 

is called the characteristic equation of the pencil. If A. satisfies equation (22) , 
it is called a characteristic value of the pencil. 
-i' z such that 

1 

If there exists a real vector, 

z. is called a characteristic vector belonging to the pencil. 

theorem holds. 

The following 
1 
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Theorem 2: The characteristic equation (22) of the regular pencil of forms, 
equation (21) , always has n real  roots, Ai, with corresponding real  character- 
istic vectors satisfying equation (23). The z .  can be chosen such that 

-1 

z! v z  - ( i , k =  1, 2, ..., n) .  ( 24) 
-1 --k - 6ik 

Since I VI - # 0,  the matrix 5 v-' has the same characteristic values as  
the pencil, equation (21), does. Hence, these characteristic values will be 

designated by Ai (3 I-'), i = I, 2, . . . , n. The matrix - -  R V-' has n real roots 

and is similar to a diagonal matrix [5]. 

Let z designate the matrix composed of the columns z. which satisfy 
-1 

equation (24). Then 

- - -  Z '  V Z = - E (Identity Matrix) 

Extrema I Properties 
Order the characteristic values of 5 _V-' as 

and let the corresponding characteristic vectors satisfying equation ( 24) be 
2 1 9  2 2 ,  - 7 zn- With this ordering, the following holds [ 51. 

z '  R z  -n --n 

-n - II 

- X ' R X  -- 
A ~ ( _ R _ v - ' )  = max x' v x  I = Z ' V Z  - -- x_ 

7 



A V 

Relations to  r a n d  r 
A V 

From the definitions of l7 and I' given by equation (20) it is clear that 

Thus the problem has been reduced to finding the minimum and maximum 
characteristic values of the matrix _R _V-* where R - and 
equation (12). 

a r e  related to A by 

Remark: In this development, it was  not assumed that _R was an RSPD matrix, 
but merely that 
positive-semidefinite) such that _V in equation (12) is RSPD, the same relations 
hold. 

was RSPD. Thus if _R is chosen RSPSD (real,  symmetric, 

RELATIONS BETWEEN A ,  (BY? AND A .(A) 
I J 

Notat i o n  

Adopt the notation 

Note that a. < 0 since A is a stability matrix. 
follows: 

Order the eigenvalues of A - as 
1 

For all A . ( A )  having a. as a real  part ,  some of these may have simple 

e l e m e n t w  divisors and some may not. In the case that there is at  'least one 
non-simple elementary divisor associated with the roots having al (A)  (a ( A ) )  n -  
as a real part ,  designate one of these as hi(&) ( A n ( A ) ) .  Then ai(&) (an(A)) 

either corresponds to characteristic values having simple or non-simple ele - 
mentary divisors depending on whether A has or has not at least one non-simple 
elementary divisor corresponding to roots with real part ai( an). 

J 1 

8 



Complex-Va lued Vectors 

For convenience in the later development, the following theorem is 
stated. 

Theorem 3: If _H is any real symmetric matrix and y is any complex-valued 
vector, a real vector x_ can always be found such that 

Proof: Let 

and w - = u - + - - ) -  i v x = u_ + b Kwhere b is a real constant which is to be selected 
such that D @ , y )  = 0. Note that wJg - - -  H w is a hermitian form and thereby takes 
on only real values. 

If b is selected as follows, D & y )  will be zero. 

1 
2 
- 0 if v '  H v = 0 - -- I - v _ ' C U  - + [ ( v _ ' _ H u _ ) 2 +  ( _ v ' _ H v _ ) 2 ]  

i f v ' H v  f O  - - -  \ 

Choosing b according to equation (35)  makes D&w) = 0.  
the real vector such that equation (33)  holds. 

Thus x_ = u_ + b v_ is 

And M A )  
j -  

Relations Between k ( B Y ) -  ' 
I 

Theorem 4: Given a real stability matrix A ,  and any RSPD or RSPSD - R and 
RSPD - V satisfying equation (12)  , the following inequalities hold: 

9 



I l l 1  I I I l l 1  I I I I l l1  I I 

Proof: By equations (2'7) and (28), and Theorem 3, it is necessary only to 
show the existence of complex-valued vectors E. such that 

1 

= (i = I, ..., n). 
i w *  v w  

-i  -- i 

From equation (12) 

W *  ( A ' Y + _ V A ) z i  = - 2 ~ ~ 6  -i R W  --i' (39) 
-i 

Let w. be a characteristic vector o f b ;  i.e. A!. = A.(A) 3.. 

(39) yields, since A' - -  = A$$ , 
Then equation 

-1 1 1 -  1 

- 
Since A. + A. = 2 a,, Theorem 3 shows that there exists a real vector x. 

1 1  1 -1 
with 

Since equation (41) holds in particular for i = i ,  n and since the x. may not be 

the principal vectors gi, equations (36) and (37) must be true. Thus the theorem 

is true. 

-1 

Can the equalities of equations (36) and (37) be made strict for some 
choices of 3 and I? The answer to  this question must await the results of 
the next section. 

10 

. . - ._ .. 



A TRANSFORMATION OF THE LYAPUNOV STABILITY EQUATION 

If a conjunctive transformation by the complex matrix _T, IT - I # 0 
is performed on equation (12 ) yielding 

P ( A ' V + V A )  T = -273 33, - - -  - - -  

equation (42) may be rewritten as 

B =  T - ' A T ,  U = T *  V T ,  Q = P  R T ,  - - - -  - - - - - - - I  

it is clear that the definiteness properties of _V and Q a re  the same as  those 
of _V and R, respectively, and the elementary divisors of _B a re  the same as 
those of A. 

In particular, let - T = _T( E) transform A to its Jordan normal form 

where E. and H. are of dimension p. x p. corresponding to the degree of the 

elementary divisor of A )( A. - A. (A) ) pi. 

In equation (43) , choose Q to be Q = diag -&, . . . , gs} 

where 

-1 -1 1 1  

1 1 -  - 



Thus 9 -  U = E - .  (the identity matrix). 

For E > 0,  but sufficiently small, it is clear that Q so defined is 
positiveaefinite. The characteristic values of the pencil (Q - AE) are  
the roots of the equation 

i Q - m l =  o (46) 

which are the roots of the equivalent expression 
S 

By a theorem of Gershgorin 
equation (47) must be within 

[ 8 ] ,  the roots of each of these factors of 
an E distance of the corresponding - A . ( A ) ;  i.e. 

1 

In particular, for a J. corresponding to a simple elementary divisor, 
-1 

A. (gi) = - cu i@) .  (49) 
J i  

the A. (R V-') a r e  the same as  the A. (Q)  . The foregoing, along with Theorem 
J - -  J -  

4, has demonstrated the following theorem. 

Theorem 5: Given a stability matrix A, and an E > 0, it is always possible to 
find an _R and _V satisfying equation (12)  such that 

- a i  - E 

- a  = A (RV-I) 5 - @  + E .  

5 h(Sy-1) 5 -  
< 

n n - -  n 

In particular, choosing 
- 

T -i + T?-i T-i) - -  - 2 -  

12 



where T transforms A to J( E )  as in equation (44), yields the required R and _V. 
Note that R_ and _V depend on E. 
following corollary. 

Consideration of equation (49) yields the 

Corollary I: Given a stability matrix _A, an RSPD 5 and 
equation (12) can be found such that 

satisfying 

(55) -1 - 
[ An@ ,v ) - - a n ( A ) l  

(a) if and (b) only if the elementary divisors of _A corresponding to the Ai@) having real 
part ai(&) [",(A) ] are  all simple. 

Proof: If they a r e  all simple, the implication (equation (54)) follows directly 
from equation (49) ,  establishing (a) of the corollary. To establish (b), it is 
only necessary to show that if one A i ( A )  with Re [Ai(&) ] = ai(&) has a non- 
simple elementary divisor, there is at  least one vector, say x_, such that 

Let u - and v - be complex such that 

Thus A. (A) has a non-simple elementary divisor and real part ai(&). 
w - -  = u + E v - where E is real. 

Let 
1 -  From equation (12) 

6 From equations (56). (57), and (58 )  

(59) 

13 
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For sufficiently small E ,  say I EO I > ] E  I > 0 , the parenthesized term on the left 
of equation (59) will be positive. Thus, for EO > E '> 0, I I  

By Theorem 3 ,  a corresponding inequality will hold for some real x, 
implies 

This 

which completes the proof of Corollary I. 

OTHER BOUNDS ON THE U R V -  ' 1 
I 

Bounds on X ( R V - I  ) 
1 -  

The preceding sections have shown that h(_R is bounded above by 
and V_ are to be RSPD matrices re - - ai@) . If - A is a stability matrix and 

lated by equation (12) , h ( R  - -  V-') must be bounded below by zero. Thus 

If the conditions are relaxed to include RSPSD _R, while maintaining the re- 
quirement that _V be unique and RSPD as a solution to equation (12) , equation 
(61)  takes the form 

According to a theorem by LaSalle [9 ] ,  asymptotic stability of the null so- 
lution of equation ( I )  is assured if the conditions of equation (2)  hold with 
(d) relaxed to 

14 



provided the set of x_ such that 
equation ( I )  , the null solution, x_= 0. In terms of V(xJ and _V(xJ , this re- 
quires that the null space of %contain no invariant space of & except x_ = g. 
Provided these conditions are met , _R can be chosen RSPSD, justifying the 
equality on the left of equation (62 ) .  

= 0 contains as a largest $variant set of 

Bounds on X ( R v "  ) 
n -- 

An( 5 E-') is bounded below by - an(&). It is also bounded above as 

long as _R is a t  least RSPSD. In particular, 

Equation (64) follows from equation (12) by considering 

or 

n 

i=l 
Since A. (R  Ti) 2 0 and since tr (_R _V-') = 

follows directly . 
Ai(_R E-') , equation (64)  

1 - -  

RELATIONS T O ?  AND i! 
I 

The following estimates have been obtained. 



These estimates a re  valid for any RSPD and _V which satisfy equation ( 12).  
A V 

If a judicious choice of E and V_ a r e  made, I' and I? can be made a s  
close to - an(A)  - and - ai(&) as desired, i.e. for E > 0 . 

V 
- a l ( ~ )  - E 5 r 5   ai(^) 

Such a _V is given by equation (53) .  

In equation (67) ,  i can be set to zero if all hi (4) with Re [ X(A) 3 = 

a! (A) have simple elementary divisors; similarly, for E in equation (68). 
n -  

RELATIONS TO C A N D  
From equation (19) i t  is clear that for the class of systems and the 

class of Lyapunov functions, 

A V 
Equations (69) and (70) can be thought of in two ways. If y and y are  

known, they a re  estimates of - 2 a! (A)  and - 2 ai(&). Conversely, if -an(&) 

and - q ( A )  - a re  laown, they serve as limiting values for y /2  and for 772 for all 

Lyapunov functions of the class considered. 

A n -  

EXAMPLES 

To illustrate the theory just stated, several examples a re  given. 
For ease in calculation and clarity in presentation, only the most simple 
matrices are selected for A. 

16 



The Lyapunov stability equation is 

, 

In each example below, for the A and _R given, _V is solved for and the Ai@_V-' ) 
are  calculated. 

Example I: 

r 1 r 1 

A =  9 =[: ';1 

where a2 1 ai 7 0, r2 - k2 > 0. After some manipulations 

where 
1 
2 
- 

Observe that K = 0, if k = 0; K . >  0 if r2 - k2 > 0, and K(a2-ai) = ai if 
r2-k2 = 0. 

Note that even if r2 -k2 = 0, that is, R_ is RSPSD, _V is still RSPD and 
according to the theorem by LaSalle, this is sufficient for the asymptotic 
stability of x_ = 0 of equation (7) , because the null space of _R contains no 
invariant subspace of A. Also note that if r2 - k2 = 0, 

17 



or ,  in other words, the limiting values on the hi(% v-') predicted by 
equations (62) and (64)  are actually attained for this choice of _R. 

Example 2: 

( 2a2k2+2ak+ I) /2a3 

2 2  where a > 0, r -k > 0. The A.(R V-I) are 
1 - -  

It is clear that no value of k will make hi(_R E") = a = h2( - Ti). 
However, given any E > 0 ,  the relation a 

a < A ~ ( I J  v-') < a + c 

can be made to hold by choosing 



1 
a2 - c2 

4 a 2  €2 

r2 - k 2  > max [ 0, 

which illustrates Theorem 5 and its Corollary i. 

Also note that if r2-k2 = 0, that is, _R is RSPD, _V is still RSPD, and since the 
null space of &contains no invariant subspace of 4, this is still sufficient to 
show that x - -  = 0 of equation (7) is asymptotically stable. In this case 

which also illustrates equations (62 )  and (64) . 
Example 3: 

& =  - R = [ :  :I 
I 2 

4 I ai - a1a2 k + a2 
I 

aik I v =  I 

I 2 
a1 + ala2 k + af 

where a1 > 0, i-k2 > 0. The h i ' s  _V-') are 

19 



Note that 

and 

hi(R - -  V-I) = 0, h2(3 !-*) = 2ai if k =  I. 

CONCLUSIONS 
A V 

It is evident that the estimates of transient response y and y will 
always give upper and lower bounds for the smallest and largest ''time 
constants" of the system considered, but that such estimates may not be 
very good. Moreover, a judicious choice of the Lyapunov functions will 
give a s  good an estimate as desired. However, this choice of the required 
Lyapunov functions is intrinsically dependent on a knowledge of the charac- 
teristic vectors of the matrix 4. This is clearly undesirable. Work is now 
underway to find some method to utilize digital computation to obtain this 
judicious choice of Lyapunov function without prior knowledge of the charac - 
teristic vectors of _A. 

George C. Marshall Space Flight Center 
National Aeronautics and Space Administration 

Huntsville, Alabama, February 23, 1966. 
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